Movimiento browniano

El movimiento browniano es el movimiento aleatorio que se observa en algunas partículas microscópicas que se hallan en un medio fluido (por ejemplo, polen en una gota de agua). Recibe su nombre en honor al escocés Robert Brown, biólogo y botánico que descubrió este fenómeno en 1827 y observó que pequeñas partículas de polen se desplazaban en movimientos aleatorios sin razón aparente. En 1785, el mismo fenómeno había sido descrito por Jan Ingenhousz sobre partículas de carbón en alcohol.

El movimiento aleatorio de estas partículas se debe a que su superficie es bombardeada incesantemente por las moléculas (átomos) del fluido sometidas a una agitación térmica.

Este bombardeo a escala atómica no es siempre completamente uniforme y sufre variaciones estadísticas importantes. Así, la presión ejercida sobre los lados puede variar ligeramente con el tiempo, y así se genera el movimiento observado.

Tanto la difusión como la ósmosis se basan en el movimiento browniano.

La descripción matemática del fenómeno fue elaborada por Albert Einstein y constituye el primero de sus artículos del que, en la obra de Einstein, se considera el Annus Mirabilis (“año maravilloso”, en latín), 1905. La teoría de Einstein demostraba la teoría atómica, todavía en disputa a principios del siglo XX, e iniciaba el campo de la física estadística.

Modelos matemáticos para la descripción del movimiento browniano

La exposición matemática de esta definición corresponde a la ecuación que gobierna la evolución temporal de la función probabilística de densidad asociada con la ecuación de difusión de una partícula browniana, y en definitiva es unaecuación diferencial parcial.

La evolución temporal de la posición de una partícula browniana en sí misma puede ser descrita aproximadamente por una ecuación de Langevin, la cual involucra un campo de fuerzas aleatorias que representan el efecto de fluctuaciones termales de una solución de partículas brownianas. En grandes escalas de tiempo, el movimiento browniano matemático se describe perfectamente con la ecuación de Langevin. A tiempos cortos, los efectos de la inerciaprevalecen en esta ecuación. Sin embargo, se considera a esta ecuación, de otra manera la ecuación se vuelve singular, así que se debe eliminar el término de la inercia de esta ecuación para tener una descripción exacta, pero el comportamiento singular de estas partículas no se describe del todo.

Otras maneras de conseguir su modelo matemático consideran un movimiento browniano B = (B_t)_{t \in [0,\infty]} como un proceso de Gauss central con una función covariante \mathrm{Cov}(B_t,B_s) = \mathop{\rm min}(t,s) para toda t,s \geq 0. El resultado de un proceso estocástico se le atribuye a Norbert Wiener, quedó demostrado en la teoría de probabilidad, existente desde 1923, y se conoce con el nombre de proceso de Wiener. Muchos detalles importantes aparecen en sus publicaciones.

Hay muchas posibilidades de construir un movimiento browniano:

  • La construcción abstracta por medio de esquemas de Kolmogórov, donde el problema viene con el aumento (o camino creciente).
  • La costrucción de Lèvy-Ciesielski: se induce este movimiento con ayuda de un sistema de Haar de  C([0,1])  a una base de Schauder, y se construye como un proceso estocástico con curva creciente.
  • Sea Z_0Z_1, … independiente, distribuida idénticamente y con distribución normal \sim \mathcal{N} (0, 1). Luego:
S(t) = Z_0 t + \sum_{k=1}^\infty Z_k \frac{\sqrt{2} \sin(k \pi t)}{k \pi}
es un movimiento browniano.

Este fenómeno está muy relacionado también con la simulación de la cotización de las acciones.

Deja un comentario

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s